Evidence for strain-induced local conductance modulations in single-layer graphene on SiO2.

نویسندگان

  • M L Teague
  • A P Lai
  • J Velasco
  • C R Hughes
  • A D Beyer
  • M W Bockrath
  • C N Lau
  • N-C Yeh
چکیده

Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO(2) substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Non-linear Static Equivalent Model for Multi-layer Annular/Circular Graphene Sheet Based on Non-local Elasticity Theory Considering Third Order Shear Deformation Theory in Thermal Environment

In this paper, it is tried to find an approximate single layer equivalent for multi-layer graphene sheets based on third order non-local elasticity theory. The plates are embedded in two parameter Winkler-Pasternak elastic foundation, and also the thermal effects are considered. A uniform transverse load is imposed on the plates. Applying the non-local theory of Eringen based on third order she...

متن کامل

Strong piezoelectricity in single-layer graphene deposited on SiO2 grating substrates

Electromechanical response of materials is a key property for various applications ranging from actuators to sophisticated nanoelectromechanical systems. Here electromechanical properties of the single-layer graphene transferred onto SiO2 calibration grating substrates is studied via piezoresponse force microscopy and confocal Raman spectroscopy. The correlation of mechanical strains in graphen...

متن کامل

Correspondence: Reply to ‘On the nature of strong piezoelectricity in graphene on SiO2'

In our paper1 we provided an experimental evidence that the single-layer graphene (SLG) deposited on SiO2 grating substrate exhibits very strong out-of-plane piezoelectric effect, several times greater than that of the best piezoceramics such as lead-zirconate titanate. Simultaneously, the in-plane strain distribution was measured by micro-Raman scattering in an attempt to relate such unusual a...

متن کامل

[1011] Scanning Thermal Microscopy on 2D Materials at cryogenic temperatures

Thermal transport in Graphene is of great interest due to its high thermal conductivity, for both fundamental research and future applications such as heat dissipation in electronic devices. Although, the thermal conductivity of graphene can reduce depending on the coupling to the substrate [1]. In this work, we report high-resolution imaging of nanoscale thermal transport in single and few lay...

متن کامل

Towards controlled graphene properties: Direct synthesis on dielectrics and Tuning via stress

Interest in graphene since its isolation in 2004 has rapidly escalated. It has been described as nature's thinnest elastic material and its exceptional mechanical and electronic properties make it an extremely exciting material. Within the realm of electronics , it is its one atoms thickness, planar geometry, high current-carrying capacity and thermal conductivity and potential to open a gap wh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 9 7  شماره 

صفحات  -

تاریخ انتشار 2009